Validation of a prognostic multi-gene signature in high-risk neuroblastoma using the high throughput digital NanoString nCounter™ system.
نویسندگان
چکیده
Microarray-based molecular signatures have not been widely integrated into neuroblastoma diagnostic classification systems due to the complexities of the assay and requirement for high-quality RNA. New digital technologies that accurately quantify gene expression using RNA isolated from formalin-fixed paraffin embedded (FFPE) tissues are now available. In this study, we describe the first use of a high-throughput digital system to assay the expression of genes in an "ultra-high risk" microarray classifier in FFPE high-risk neuroblastoma tumors. Customized probes corresponding to the 42 genes in a published multi-gene neuroblastoma signature were hybridized to RNA isolated from 107 FFPE high-risk neuroblastoma samples using the NanoString nCounter™ Analysis System. For classification of each patient, the Pearson's correlation coefficient was calculated between the standardized nCounter™ data and the molecular signature from the microarray data. We demonstrate that the nCounter™ 42-gene panel sub-stratified the high-risk cohort into two subsets with statistically significantly different overall survival (p = 0.0027) and event-free survival (p = 0.028). In contrast, none of the established prognostic risk markers (age, stage, tumor histology, MYCN status, and ploidy) were significantly associated with survival. We conclude that the nCounter™ System can reproducibly quantify expression levels of signature genes in FFPE tumor samples. Validation of this microarray signature in our high-risk patient cohort using a completely different technology emphasizes the prognostic relevance of this classifier. Prospective studies testing the prognostic value of molecular signatures in high-risk neuroblastoma patients using FFPE tumor samples and the nCounter™ System are warranted.
منابع مشابه
Prognostic gene signature profiles of hepatitis C-related early-stage liver cirrhosis
The rate of hepatitis C virus (HCV) related liver cirrhosis and subsequent cancer development is increasing and raising the risk of related mortality and morbidity. To address this issue, we aimed to develop a prognostic index that can be used to stratify patients for risk of disease progression. This index was developed in part by using a gene signature test implemented in a clinically applica...
متن کاملNanoStringDiff: a novel statistical method for differential expression analysis based on NanoString nCounter data
The advanced medium-throughput NanoString nCounter technology has been increasingly used for mRNA or miRNA differential expression (DE) studies due to its advantages including direct measurement of molecule expression levels without amplification, digital readout and superior applicability to formalin fixed paraffin embedded samples. However, the analysis of nCounter data is hampered because mo...
متن کاملPrognostic Fifteen-Gene Signature for Early Stage Pancreatic Ductal Adenocarcinoma
The outcomes of patients treated with surgery for early stage pancreatic ductal adenocarcinoma (PDAC) are variable with median survival ranging from 6 months to more than 5 years. This challenge underscores an unmet need for developing personalized medicine strategies to refine the current treatment decision-making process. To derive a prognostic gene signature for patients with early stage PDA...
متن کاملEvaluation of frozen tissue-derived prognostic gene expression signatures in FFPE colorectal cancer samples
Defining molecular features that can predict the recurrence of colorectal cancer (CRC) for stage II-III patients remains challenging in cancer research. Most available clinical samples are Formalin-Fixed, Paraffin-Embedded (FFPE). NanoString nCounter® and Affymetrix GeneChip® Human Transcriptome Array 2.0 (HTA) are the two platforms marketed for high-throughput gene expression profiling for FFP...
متن کاملnCounter(®) PanCancer Immune Profiling Panel (NanoString Technologies, Inc., Seattle, WA).
The nCounter PanCancer Immune Profiling Panel is a unique 770-plex gene expression panel to measure the human immune response in both solid and liquid cancer types. The panel measures many features of the immune response to facilitate rapid development of clinical actionable gene expression profiles in the context of cancer immunotherapy. The assay is run on the nCounter Analysis System (Nanost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular oncology
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2014